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Analysis of Microstrip Step Discontinuity by
the Modified Residue Calculus Technique

TAK SUM CHU AND TATSUO ITOH, FELLOW, IEEE

Abstract —The microstrip step discontinuity is analyzed by the modified
residue calculus technique. The method is numerically stable and efficient.
The results obtained have been compared with other availab~e data, and

aweement has been found to be quite good.

I. INTRODUCTION

A CCURATE INFORMATION on the scattering at

the microstrip step discontinuity becomes increas-

ingly important” as more precise design procedures are

required for monolithic microwave and millimeter-wave

integrated circuits. One of the methods for the analysis of

the step discontinuity is the mode-matching method ap-

plied to the equivalent waveguide model [1]-[4].

In this paper, an alternative technique based on the

modified residue calculus technique (MRCT) is presented

[5]. It is assumed that the waveguide model is acceptable

for the characterization of the step discontinuity. The

MRCT is applied to the waveguide model corresponding to

the microstrip step discontinuity.

II. FORMULATION

The first step is to find the waveguide model of the step

discontinuity. Fig. 1 depicts such a waveguide model. The

top and bottom are electric walls and the sidewalls are

magnetic walls. The height h is identical to the thickness of

the microstrip substrate. The effective dielectric constant c1

and the effective width 2a of Region A can be found from

the propagation constant ~1 and the characteristic imped-

ance ZOI of the microstripline modeled by the waveguide in

Region A.

61 = (B1/ko)2 (1)

ZOI = [120n/&] (h/2a). (2)

~1 and 201 must be calculated beforehand from the struc-

tural parameters by a standard full-wave analysis [6] or a

curve fitting formula. Region B can be characterized in the

same way.

We now introduce an auxiliary geometry in Fig. 2 that

represents one side of the dotted center line in Fig. 1,

because we are dealing with a symmetric structure. In this

auxiliary geometry, Regions C and D are introduced for

convenience of formulation in the MRCT. The original
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Fig. 1. Equivalent wavegmde model of a microstnp step discontinuity.
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Fig. 2. Auxiliary geometry for analysis,

structure can be recovered by letting d + O. Notice that the

fields are invariant in the y-direction. Then, for the TEPO

incidence from Region A and the TE~O incidence from

Region B (p= O or q = O corresponds to TEM), the E,

field in each regions is

Region A:

~y = A COS ~e-JbPz + ~ /tnCOS ~eJB”z, 2<0

E=()

Region B:

E,= Bcos ‘; m --e 17..,
n7rx _

__. eJl’q~ + ~ Bncos z>d
~=o

Region C:

.~=(j

O<z<d

Region D:

E,= ~ COS=[D e-J~.z+~eJ?.,]
b“ n > O<z<d

~=o

where A and B are the amplitudes of the incident modes,
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gation constants in the respective region
..

where

~=a–b

and

pn=exp(–2jF.d).

Naturally, the corresponding HX fields can be found from

the derivative of EY with respect to z.

We impose the continuity conditions at z = d and z = O

for the respective EY and HX components. Imposing the

orthogonality conditions and rearranging the resultant ex-

pressions, we obtain a linear simultaneous equation for A.,

Bn, and C.. When B. and C. are eliminated by some

algebraic manipulation, the following expressions invol~ng

the unknown modal coefficients are obtained:

r =~m–Ym
m

Ym+Yw’
rn=l,2,3, .o.

r=y Yo
o

YO+YO”

Because of the linearity of the set of equations, excitations

from Regions A and B can be considered separately. As a

demonstration, we will develop the solution for TEN (TEM)

excitation from Region A. The solution for the excitation

from Region B or for another modal excitation is similar.

For the case in consideration, p, B, and d, are set to

zero in the above expressions to obtain the final form of

equations for which the MRCT can be applied. The solu-

tion for this set of equations is based upon the construction

of a mesomorphic function ~(w) satisfying the following

p%’

()
– sin ~

+ro a

1
BP-70 A

ml — —

\ )-[( Bo+Yo)+ro(Po- Yo)]bAo+ ~ ~+rO& = - [(7O + Yo)-ro(70 - Yo)]b&$B (3)
~=1 n

[

(–)p sin prb

(–)

~ sin pvb

](

— —
a a—

~p+7: A+rm
BP -7:

A + g -4tL-+r~--4!.L.
~=, t%-i’m &+ ?m )

=(-1) ’’’; [(~y#~#(7~+y~) ]8jB, B, nz=l,2,3,... (4)

[

(–)p sin p~b pr .

(–)

pnb

‘[(& -FO)+PO(&+~O)]C~;A-(l-%’) ~ a ~ +F- A+po=s’n .-a A
P P, -PO

—

cc

[

— —

+[(BO+FO’+Po(Bo–~O)]CAo+n~l ~+~.~
1

= o (5)
n n

(–)

~ sin prb

(–)

~ sin pvb

a a

BP+B: ‘+P” b, -B: 1A+~
~=1

In Xfl

Al -D. 1
+Pmpn+pm =.07 m=l,2,3, .-. . (6)

B. can be related to A. as

p7r

()

pvb
— sin —

(PP+T’0)WHH3 a p _y: A-(~o-~o)bffo + ~:1~ = (70- Yo)b~8B+(70+Yo)bBo (7)
P n
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conditions: To solve for Bti, we consider the following integrals:

i) j(w) has simple poles at w = ~u, n=l,2,3, . . .

ii) j_(&)+~(–~~)= O, m=l,2,3, . . . +i-’”=:,w’f(-~o) (“~

iii) ~(~m)+rm~(–ym)= Q m=l,2,3, . . .

iv) j(w) - KW–5/3, asw+ co. 1

4

f(w) w Rf(pn)

2vj ~w+~~ ‘W=n;l pn+~o ‘f(–~~)’

Next, let us consider the following contour integrals where m=l,2,3, . . . . (17)

c is a circle with an infinite radius: The left-hand sides would again yield zero. Comparing (7)

1–$( f(w)

)

f(w) ~w
and (8) with (16) and (17), we arrive at

2mj ~ w–~. +row+~o .
~o= (( Bo+70)~A –f(–ye))/~(yo +70) (18)

+f(70)+rof(–70)

.*c#+rmJ#l--]dw4( m rIqw, pn+c$)IIJ’fb(w>Yn)

’03
~(w) =KF’(w)exp(Lw)

x Rf(Pn)(*+ B.??.
)

II(w, pn)
——

~=1 where

%=(-1) ‘+12f(– ym)/b(ym+~m),

m=l,2,3, . . . . (19)

Hence, once f(w) is constructed, Am and B~ can be

obtained. Let us consider the following functional form of

f(w):

+f(7m)+rmf(–im)j K= unknown coefficient

m=l,2,3, . . .
L“

(()
$ in ~ +~ln(~)]

1

4(

f(w)

)

+_ f(w) ~w
s=

—— _
‘29rj ~ W–J?O w+~o ll(w, ~n)=

rIM

—- E wu(~+pn~~o

*=1 ) and

–~j(&/6c) ‘

~1,((1- W/Bn)WJ( jwb/nm))

denotes omission of first M factors

M=ikf=+fvlb

~=pz, i=l,2,3,. ... M a

+f(pm)+f(–~m), w {+ Ma=?i, , i=l,z,j,”””,~b.

m=l,2,3, . . .

where Rf ( w ) is the residue of f at w.

All of the above contour integrations yield zero because

of the asymptotic behavior of ~(w) as 1w I -+ m. Using
conditions i) and ii) and comparing (3)–(6) with (9)–(12),

we obtain the following relationships between ~(w) and

An:

af(fiko)+(cI’o + b) f(–~ko) = 2&kobc(ro–l)A

(13)

Since K can be determined from the normalization condi-

tion (13), the only unknowns are coefficients F,, which can

be determined by imposing conditions ii) and iii). From

this process, linear simultaneous equations for F, with the

coefficient matrix size M X M are derived. They are solved

for ~.

It should be noticed that, as is well known, the canonical

bifurcation problem obtained by d ~ O in Fig. 2 cannot be

solved by the residue calculus technique if the excitation

from A is TEM because the TEM mode does not excite the

higher order mode.

III. NUMERICAL RESULTS

(rob + ~) f(~ko)+ roaf(-&~o) ~14)

A.= Convergence of the present numerical method has first

2fikobc(ro – 1) been studied by increasing the matrix size M. Fig. 3 p~ots

the magnitude of the transmission coefficient of the-domi-

~n = ~f(Bn), n=l,2,3, . . . . (15) nant mode into Region B with the domina~t mode incide~t
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Fig. 3. Convergence study of the method.
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Fig. 4. Magnetic field distribution at the discontinuity. Dominant mode
incident from Region A. Matrix size M =12.

from Region A. In this case, M.= it4~ has been main-

tained. The structural parameters are a =100, b = 26.1 (in

roils), c1 = 2.2, and c~ = 2.1. Notice that the vertical scale is

extremely expanded so that the change in the fifth decimal

place can be observed. The number of terms in the trun-

cated infinite products is 40 in this case.

Fig. 4 shows the magnitude of the HX field at z = O. The

curve indicates the singularity nature of the HY near the

edge and the satisfaction of the boundary condition EfX = O

on the magnetic wall b(26.1) < x < a( = 100).

In addition, the numerical efficiency and stability of the

present method are compared to those of the mode match-

ing method [4]. Table I shows the convergence trend of the

dominant mode reflection coefficient. Since the two meth-

ods are essentially different, the computation time should

be compared in addition to the matrix size. The computa-

tion was run on a CDC 170/750 at the Computation

Center of the University of Texas. The matrix size used

was 8 X 8 for both methods. The average computation time

for each frequency point for the mode-matching method is

0.30s, and it is 0.27s for the MRCT.

In Fig. 5, the frequency characteristics of the reflection

and transmission coefficients calculated by the present

TABLE 1
COMPARISONOFCONVERGENCE

1=’t%wl,l
Metrlx

s]ze MRCT Mode-f letchlng

4

2 59935 59947

4 59930 59934

6 59930 59930

8 59929 59929

10 59929 5992I3

12 59929 59928

14 59929 59928
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Fig. 5. Frequency-dependent characteristics of the scattenngparazneters.

method are compared with those reported by Kompa [2]. A

slight discrepancy is cau>ed by the’ use Of different disper-

sion formulas to calculate the effective dielectric constants

and the effective widths.

IV. CONCLUSION

The modified residue calculus technique has been ap-

plied to the symnietric ticrostrip step problem. The results

can be computed efficiently and accurately. This method is

useful for the step discontinuity structure for which the

equivalent waveguide model is a valid approximation.
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