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Analysis of Microstrip Step Discontinuity by
the Modified Residue Calculus Technique

TAK SUM CHU anp TATSUO ITOH, FELLGW, IEEE

Abstract —The microstrip step discontinuity is analyzed by the modified
residue calculus technique. The method is numerically stable and efficient.
The results obtained have been compared with other available data, and
agreement has been found to be quite good.

I. INTRODUCTION

CCURATE INFORMATION on the scattering at

the microstrip step discontinuity becomes increas-
ingly important as more precise design procedures are
required for monolithic microwave and millimeter-wave
integrated circuits. One of the methods for the analysis of
the step discontinuity is the mode-matching method ap-
plied to the equivalent waveguide model [1]-[4].

In this paper, an alternative technique based on the
modified residue calculus technique (MRCT) is presented
[5]. It is assumed that the waveguide model is acceptable
for the characterization of the step discontinuity. The
MRCT is applied to the waveguide model corresponding to
the microstrip step discontinuity.

JI. FORMULATION

The first step is to find the waveguide model of the step
discontinuity. Fig. 1 depicts such a waveguide model. The
top and bottom are electric walls and the sidewalls are
magnetic walls. The height /4 is identical to the thickness of
the microstrip substrate. The effective dielectric constant €,
and the effective width 24 of Region A can be found from
the propagation constant 8, and the characteristic imped-
ance Z; of the microstripline modeled by the waveguide in
Region A.

6= (,31/150)2 (1)

Zpy = 1207/, |(h/2a). (2)

B, and Z; must be ¢alculated beforehand from the struc-

tural parameters by a standard full-wave analysis [6] or a

curve fitting formula. Region B can be characterized in the
same way.

We now introduce an auxiliary geometry in Fig. 2 that
represents one side of the dotted center line in Fig. 1,
because we are dealing with a symmetric structure. In this

auxiliary geometry, Regions C and D are introduced for
convenience of formulation in the MRCT. The original
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Fig. 1. Equivalent waveguide model of a microstrp step discontinuity.
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Fig. 2. Auxiliary geometry for analysis.

structure can be recovered by letting d — 0. Notice that the
fields are invariant in the y-direction. Then, for the TE
incidence from Region A and the TE_, incidence from
Region B (p=0 or ¢=0 corresponds to TEM), the E,
field in each regions is '

Region A:
e o)
E, = Acos PTX o~ibre 1 Y A cos ZTX gz, z<0
a - a
n=0
Region B:
o0
E,= Bcos X o170 4 Y. B,cos TTX ez, z>d
n=0
Region C:
o
na(x—>b 5, 5
E,= )} C,cos nr(x—b) - ) [e7/Be? + p,e /5],
n=20
0<z<d
Region D:
[e.a]
nawx - -
E,= ) cos—Z—[Dne‘”nz-i-Fne”"z], 0<z<d

n=0
where A and B are the amplitudes of the incident modes,
and 4,, B,, C,, D,, and F, are the unknown scattered
mode amplitudes. Also 8,. v,, B,, and ¥, are the propa-
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gation constants in the respective region

[

na\? nw
B, = flkg—(‘;;) Yo = fzk(zr(j)
— nw\? _ naw\?
Bn= E1k(2)_'(~_£") Yn= EIk(%_(T)
c=a—b

and
p,=exp(—2jB,d).

Naturally, the corresponding H, fields can be found from
the derivative of E, with respect to z.

We impose the continuity conditions at z=4d and z=0
for the respective E, and H, components. Imposing the
orthogonality conditions and rearranging the resultant ex-
pressions, we obtain a linear simultaneous equation for 4,
B,, and C,. When B, and C, are eliminated by some
algebraic manipulation, the following expressions involving
the unknown modal coefficients are obtained:
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where

Because of the linearity of the set of eciuations, excitations
from Regions A and B can be considered separately. As a
demonstration, we will develop the solution for TE,, (TEM)
excitation from Region A. The solution for the excitation
from Region B or for another modal excitation is similar.

For the case in consideration, p, B, and d, are set to
zero in the above expressions to obtain the final form of
equations for which the MRCT can be applied. The solu-
tion for this set of equations is based upon the construction
of a meromorphic function f(w) satisfying the following

- Msin(P—Z—IZ) p%sin(—gz—b)
[(B, = %)+ To(B, +7,)| 0480 — (1-87) - e +T, = 4
= (A, 4, . _
B+ 7B = T L (525 T =~ (Gt )= TuRo - wlbags ()
p—sin(g—gé) p'”sin(‘pW ) 00 I i
'8P+-?m A+rm IBP—?m A +n§1(Bﬂ_?m+rmB"+?m)
=(_1)m%[(‘7m_‘Ym)rm—(?mdl—ym)]erB’ m=172737"' (4)
p%sin(m) %Esin(g-g—lz)
- _B ) 04_(1—89) .
[(Bp BO)+pO('Bp+IBO)]cspA (1 811) Bp+EO Po Bp—B—O A
- . o | _4. 4,
+[(IBO+IBO)+p0(:BO_:BO)]CAO+ngl Bn_EO-'-men—EO =0 (5)
p—:-sin(m) Pﬂsin(p—zb—) . i —
a \al _ n_ n_ |- =1,2,3,--- . 6
B+B, P g-p, +n§1[ﬁn—ﬁm“’mﬁn+ﬁm oo ©)
B, can be related to 4, as
2 sin(222) - I
(Bp'*"?o)ba;)A_(l_s;)) . — Yo A"(Bo‘?o)bAo + ngl B, _:70 =(-Y-o—70)b8513+(70+70)bB0 (7)
_P7 o272 I
P Y = (<) 5 (G 1)84E (D) (B, me=1230 ()
=1 Mn m

Bp_vm ne=
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conditions:

i) f(w) has simple poles at w=g,, n=1,23,-
i) f(B)+f(=B,)=0, m=123,--

111) f(‘Ym)_*—I‘ f( Ym) O m=172937”'
iv) f(w)~Kw™>73,  asw+oo.

Next, let us consider the following contour integrals where
¢ 1s a circle with an infinite radius:

(L L

Toor Yo
b 1
- ¥ &8 =

T
?*&f%)
+f(¥o) + Tof (= %)

GO
X 27r]¢< w— ym

= Z Rf(B, )( —+ Bnlkym)

n=1

r Sw) )

"‘w+ym

+f(F)+ T (= 7). |
m=1,2,3,--
1 f(w) f(w)
Xfﬁiﬂ~m+ w+%)
- LR

1
- (Bwﬁ s B+&)
+f(Eo)+f(—Eo)
1 f(w)
va?jﬁ;(w—.ﬁ
IO e

n=1

+f(B.)+f(=B,)

(o]

")

7l
ﬂn+Bm

m=1,2,3,--

where Rf(w) is the residue of f at w.

All of the above contour integrations yield zero because
of the asymptotic behavior of f(w) as |w|- oc. Using
conditions 1) and ii) and comparing (3)-(6) with (9)—(12),
we obtain the following relationships between f(w) and
A .

ne

af (e, ko) + (eTy + b) f( = er ko) = 2/fey kobe(Ty —1) 4

(13)

_ (Tob + ) f{er ko) + Toaf (= Je ko
Ao= 2/fe, kobe(Ty—1) (14)
1‘1—"=Rf(ﬂn),- n=1,23,---. (15)
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To solve for B,,, we consider the following integrals:

RV I
Taf Cv{iwy) Z Bf(fz+f( V)
m=1,2,3,---. (17)

The left-hand sides would again yield zero. Comparing (7)
and (8) with (16) and (17), we arrive at

0=((Bo'*‘Yo)bA‘”f(_Yo))/b(Yo+70) (18)

B, = (=1)""2f (= %,)/b (Y + ¥),
m=1,23---. (19)
Hence, once f(w) is constructed, A4, and B, can be

obtained. Let us consider the following functional form of
f(w):
I1"2(w, B, + 8) T (w,7,)

f(w) = KP(w)exp(Lw)

I(w,B,)

where

K = unknownb coefficient

CLa a c

Lo rp(n(E)egm(s))

8 = —J(7/6¢)

O(w, 8= TT(@=w/B)exp(jwb/nm))

™ denotes omission of first M factors
and

P(W)—H(l W/W)+Z FI1

13w

i=1{ = ,
where
M=M+M,
W,=B, i=1,2,3, ;
W, =Y i=1,2,3,---, M,.

Since K can be determined from the normalization condi-
tion (13), the only unknowns are coefficients F,, which can
be determined by imposing conditions ii) and iii). From
this process, linear simultaneous equations for F, with the
coefficient matrix size M X M are derived. They are solved
for F,

It should be noticed that, as is well known, the canonical
bifurcation problem obtained by d — 0 in Fig. 2 cannot be
solved by the residue calculus technique if the excitation
from A is TEM because the TEM mode does not excite the
higher order mode.

IIL.

Convergence of the present numerical method has first
been studied by increasing the matrix size M. Fig. 3 plots
the magnitude of the transmission coefficient of the-domi-
nant mode into Region B with the dominan} mode incidefit

NUMERICAL RESULTS
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Fig. 3. Convergence study of the method.
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Fig. 4. Magnetic field distribution at the discontinuity. Dominant mode
incident from Region A, Matrix size M =12.

from Region A. In this case, M, = M, has been main-
tained. The structural parameters are a =100, b =26.1 (in
mils), ¢, = 2.2, and ¢, = 2.1. Notice that the vertical scale is
extremely expanded so that the change in the fifth decimal
place can be observed. The number of terms in the trun-
cated infinite products is 40 in this case. ‘

Fig. 4 shows the magnitude of the H, field at z = 0. The
curve indicates the singularity nature of the H, near the
edge and the satisfaction of the boundary condition H, =0
on the magnetic wall 5(26.1) < x < a( =100).

In addition, the numerical efficiency and stability of the
present method are compared to those of the mode match-
ing method [4]. Table I shows the convergence trend of the
dominant mode reflection coefficient. Since the two meth-
ods are essentially different, the computation time should
be compared in addition to the matrix size. The computa-
tion was run on a CDC 170,750 at the Computation
Center of the University of Texas. The matrix size used
was 8 X 8 for both methods. The average computation time
for each frequency point for the mode-matching method is
0.30 s, and it is 0.27 s for the MRCT.

In Fig. 5, the frequency characteristics of the reflection
and transmission coefficients calculated by the present
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TABLEI
COMPARISON OF CONVERGENCE
Ad
|Sloull00]l
Matrix
size MRCT Mode-Matching
2 59935 59947
4 59930 59934
6 59930 59930
8 59929 59929
10 50929 59928
12 59929 59928
14 $9929 59928
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Fig. 5. Frequency-dependentcharacteristicsof the scattering parameters.

method are compared with those reported by Kompa [2]. A
slight discrepancy is caused by the use of different disper-
sion formulas to calculate the effective dielectric constants
and the effective widths.

IV. CONCLUSION

The modified residue calculus technique has been ap-
plied to the symmetric microstrip step problem. The results
can be computed efficiently and accurately. This method is
useful for the step discontinuity structure for which the
equivalent waveguide model is a valid approximation.
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